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A versatile and efficient multi-block method is presented for the simulation of both
steady and unsteady flow, as well as aerodynamic design optimization of complete
aircraft configurations. The compressible Euler and Reynolds Averaged Navier-
Stokes (RANS) equations are discretized using a high resoclution scheme on body-
fitted structured meshes. An efficient multigrid implicit scheme is implemented for
time-accurate flow calculations. Optimum aerodynamic shape design is achieved
at very low cost using an adjoint formulation. The method is implemented on
parallel computing systems using the MPI message passing interface standard to
ensure portability. The results demonstrate that, by combining highly efficient
algorithms with parallel computing, it is possible to perform detailed steady and
unsteady analysis as well as automatic design for complex configurations using the
present generation of parallel computers.

1 INTRODUCTION

The essential requirements for the industrial use of Computational Fluid Dy-
namics (CFD) are: (1) reliable solution accuracy, (2) acceptable computa-
tional cost, (3) complex geometry treatment and (4) rapid solution/design
turnaround.

Advances in both algorithms and computing hardware have been and will
be necessary to fulfill these requirements. During the eighties the development
of vector processors allowed the aeronautical engineer to analyze steady-state
flow problems. In the last three years parallel computing has begun the tran-
sition from research laboratories to industrial environments. Today, parallel
computing promises to enhance our flow prediction capability by allowing the
analysis of -time-dependent flow and by enabling the the automatic design op-
timization of complete aircraft.” There remains the challenge of developing
application software which can take full advantage of the computing power of
these new architectures.



With these goals in mind, much effort by our research group has been
placed on the development of accurate and efficient methods for the calcula~
tion of steady and time dependent three-dimensional inviscid and viscous flows.
Not only are these analysis methods necessary purely for evaluating candidate
designs, but they also form the core of any CFD based design approach. The
pursuit of high accuracy has focused on the implementation of refined artificial
dissipation algorithms which provide the necessary upwind bias without cor-
rupting the physical phenomena at hand. Efficiency has been achieved through
the application of multigrid algorithms and the utilization of high performance
scalable parallel computing platforms.

For time-resolved flow calculations we have continued the development of
a very efficient multigrid implicit scheme originally presented by Jameson for
the compressible Euler equations ®. This method has proved effective for the
calculation of unsteady flows that might be associated with wing flutter?3, and
for the calculation of unsteady incompressible flows“. It has also been applied
recently to simulate helicopter rotor flows®. The method has the advantage
that it can be added as an option to a computer program which uses an explicit
multigrid scheme, allowing it to perform efficient calculations of both steady
and unsteady flows. :

Three alternative approaches are available for the discretization of complex
configurations: (1) Cartesian meshes, (2} unstructured tetrahedral meshes, and
(3) body-fitted meshes. These basic techniques can be also combined into a
variety of hybrid mesh strategies. Each of these approaches has advantages
and disadvantages. In this work we use body-fitted hexahedral meshes. These
are particularly well suited for the treatment of viscous flow because they
readily allow the mesh to be refined in the region near the body and in the
direction normal to the surface. However, in order to use body-fitted meshes for
very complex configurations it generally proves necessary to use a multi-block
procedure 87, whereby multiple structured meshes are pieced together to form
the entire flow-field domain. From our perspective, the major advantage of a
multi-block approach is that it allows a straightforward extension to complex
geometries of a family of well validated computer codes originally written for
single-block meshes.

With currently available computers the turnaround for numerical simula-
tions is becoming so rapid that it is feasible to examine an extremely large
number of variations. However, it is not at all likely that interactive analysis
and a design approach involving significant user intervention will lead to truly
optimum designs. To examine a larger design space and realize substantial im-
provements in aerodynamic efficiency of new designs, CFD simulations need to
be combined with automatic search and optimization procedures. Thus, con-
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currently with the development of improved analysis methods, we have made
considerable efforts toward the development of automatic design methodolo-
gies. The problems of drag minimization and inverse design can both be sys-
tematically treated within the mathematical theory for the control of systems
governed by partial differential equations . The control theory approach to
‘optimal aerodynamic design, whereby the boundary shape becomes the con-
trol, and the gradient of the cost function with respect to shape changes is
obtained by solving the adjoint problem for the given set of governing equa-
tions, was first applied to transonic flow by Jameson?1°. The adjoint approach
has been recently implemented in the inviscid version of the multi-block flow
solver 1112:13 thus allowing for the optimization of complete configurations.

The mathematical models governing compressible flow are discussed in the
next section. Section 3 presents the numerical algorithms for flow simulation.
Section 5 presents the results of some numerical calculations for steady and
time resolved flows on complex configurations. Section 5.3 discusses automatic
design procedures which can be used to produce optimum aerodynamic designs,
and presents the results for the aerodynamic optimization of a typical transonic
business jet configuration and a supersonic transport configuration.

2 MATHEMATICAL MODEL

The dynamics of compressible fluid flows are governed by the Navier-Stokes
equations. Let (z;,z2,z3) be a Cartesian coordinate system. By adopting the
convention of indicial notation where a repeated index “” implies summation
over i = 1 to 3, the three-dimensional Navier-Stokes equations take the form

o Ofi _ 0fu
ot 62:i - Bx,-

n D, (1)

where the state vector w, inviscid flux vector f, and viscous flux vector f, are
described by

p pu; . 0
puy pu;uy + pds 03051
w=4q puz p, fi=1Q puiuz+pda 3, fo; = oij052 . (2
pu3 puiuz + pdiz 05053
pE puH u;joij + kg—g:

In these definitions, p is the density, u1,u2, us are the Cartesian velocity com-
ponents, E is the total energy and é;; is the Kronecker delta function. The
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pressure is determined by the equation of state
1
p=(-1piE- ‘2‘(Uiui) )
and the stagnation enthalpy is given by
H=E+2,
p
where + is the ratio of the specific heats. The viscous stresses may be written

as
o Ou; . Ouj '.Buk
% = H# (6:8] + 6.’1:1,) + )‘61‘7 6xk’ (3)

where p and X are the first and second coefficients of viscosity. The coefficient
of thermal conductivity and the temperature are defined by

e p
k: s T='—. 4
Pr (v=Dp )

When using a discretization on a body-conforming structured mesh, it
is useful to consider a transformation to computational coordinates (£;,£2,3)
defined by the metrics

i)
9¢;

The Navier-Stokes equations can then be rewritten in computational space as

8(Jw) O(F-Fy)
o T o 0

Kﬁ::[ },.I:da(K% K51=[g§}.

6mj

in D, (5)

where the inviscid and viscous flux contributions are now defined with respect
to the computational cell faces by F; = Si;f; and Fy; = Sijfuj, and the
quantity S;; = JKi;1 is used to represent the projection of the &; cell face
along the z; axis. In obtaining equation (5) we have made use of the property

that a3
< =0, (6)
0¢;
which represents the fact that the sum of the face areas over a closed volume
is zero, as can be readily verified by a direct examination of the metric terms.

When the mesh is non stationary, the calculation of the flux must take
into account the motion of the mesh. For a moving mesh, the conservation
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equations are obtained by computing the convective flux based on the fluid
velocity relative to the moving mesh. If the mesh deforms, the time variation
of the control volumes must also be accounted for.

Many critical phenomena of fluid flow, such as shock waves and turbu-
lence, are highly nonlinear and exhibit extreme disparities of scales. While the
actual thickness of a shock wave is of the order of the mean free path of the gas
particles, on a macroscopic scale its thickness is virtually zero. In turbulent
flows, energy is transferred from large scale motions to progressively smaller
eddies until the scale becomes so small that the motion is dissipated by vis-
cosity. The ratio of the length scale of the global flow to that of the smallest
persisting eddies is of order Re%, where Re is the Reynolds number (typically
in the range of 30 million for a transport aircraft). In order to resolve such
scales in all three spatial directions, a computational grid with order Ref cells
would be required. This is beyond the range of any current or foreseeable
computer.

Accurate modeling of multi-scale phenomena has presented the CFD re-
search community with a challenge that has yet to be fully resolved. With
regards to shock waves, the development of new high resolution schemes has
resulted in very accurate models for shock capturing. To simulate turbulent
flows, simplified models must be constructed. In the limit of infinite Reynolds
number, the contributions due to viscosity and heat conduction vanish. Thus
equation (5) may be reduced under such assumptions to the Euler equations.
This inviscid model may be suitable for describing the flow on most aircraft at
cruise conditions. However, viscous effects must be ultimately be taken into
account since shock waves and boundary layers often interact with a dramatic
effect on the flow field.

When viscous effects and turbulence play a salient role, a common ap-
proach is to time average the Navier-Stokes equations. This produces the
Reynolds Averaged Navier-Stokes (RANS) system which governs the dynam-
ics of the mean flow. The use of the RANS equations brings viscous flow
calculations within the threshold of feasibility on modern computers. Unfortu-
nately, the averaging process results in additional terms and unknowns which
require a turbulence model for closure of the system of equations. In this work
a very simple algebraic closure model, originally developed by Baldwin and
Lomax 14, is used. This model has proved satisfactory for the calculation of
attached and slightly separated wing flows !3, and with appropriate modifi-
cations has been successfully applied to vortical flows 1817, Closure models
based on the solution of transport equations for the turbulent kinetic energy k
and the dissipation rate ¢, or for a pair of equivalent quantities !8:19:20,21,22,23
will be implemented in our multi-block solver in the near future.
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3 NUMERICAL METHOD

3.1 SPATIAL DISCRETIZATION

"The discretization of the spatial operators is accomplished by using a cell-
center finite volume method. The flow domain is divided into a large number
of small subdomains, and the integral form of the conservation laws

P :
&/Dwdv-i-/l;F-dS—O

is applied to each subdomain. Here F is the flux appearing in equation (5)
and dS is the directed surface element of the boundary B of the domain D.
The use of the integral form has the advantage that no assumption of the
differentiability of the solution is implied, with the result that it remains a valid
statement for a subdomain containing a shock wave. In general the subdomains
could be arbitrary, but in this work we use the hexahedral cells of a body-
conforming curvilinear mesh. Discretizations of this type reduce to central
differences on a regular Cartesian grid, and in order to eliminate possible odd-
even decoupling modes allowed by the discretization some form of artificial
dissipation must be added. Moreover, when shock waves are present, it is
necessary to upwind the discretization to provide a non-oscillatory capture of
discontinuities. In the present work this goal is achieved by using a Convective
Upstream Split Pressure (CUSP) approach, coupled with an Essential Local
Extremum Diminishing (ELED) formulation. Details on this technique and an
extensive validation of the scheme for both 1nv1sc1d and viscous flow, can be
found in 24:25:26,

To include the viscous terms of the Navier-Stokes equations into the spatial
discretization scheme it is necessary to approximate the velocity derivatives g—h
which constitute the stress tensor o;;. These derivatives may be evaluated by
applying Gauss’ formula to a control volume V with the boundary S:

8u,-
v 6.’17]

dV=/uinde,
s

where n; is the outward normal. For a hexahedral cell this gives

Tj VZ Ui n; S (7)

faces

where %; is an estimate of the average of u; over the face, n; is the j — th
component of the normal, and S is the face area.
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3.2 TIME STEPPING SCHEME FOR STEADY-STATE SOLUTIONS

If the space discretization procedure is implemented separately from the dis-
cretization in time, it leads to a set of coupled ordinary differential equations
which can be written in the form

dw
pry +R(w) =0, (8)

where w is the vector of the flow variables at the mesh locations, and R(w) is
the vector of the residuals, consisting of the flux balances defined by the spa-
tial discretization together with the added dissipative terms. If the objective
is simply to reach the steady state and details of the transient solution are
immaterial, the time-stepping scheme may be designed solely to maximize the
rate of convergence.

Throughout this work we use a multistage explicit scheme, belonging to
the general class of Runge-Kutta schemes??. Schemes of this type have proved
very effective for a wide variety of problems, and they have the advantage that
they can be applied equally easily on both structured and unstructured meshes
28,29,30,31,32_ .

If one reduces the linear scalar model problem corresponding to (8) to
an ordinary differential equation by substituting a Fourier mode @ = e*P%,
the resulting Fourier symbol has an imaginary part proportional to the wave
speed, and a negative real part proportional to the diffusion. Thus, the time
stepping scheme should have a stability region which contains a substantial
interval of the negative real axis, as well as an interval along the imaginary
axis. To achieve this we treat the convective and dissipative terms in a distinct
fashion. Thus the residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the
time level nAt by a superscript n. Then the multistage time stepping scheme
is formulated as

,w(n+1,0) = n

w
w(n+1,k) = w" —apAt (Q(k-—l) + D(k—l))
wn+1 — w("+1’m)’
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where the superscript k denotes the k-th stage, a,, = 1, and

QY = Q@", D =D@"

o = Q (w10)
D® = gD (wH) + (1 gD,

The coefficients aj are chosen to maximize the stability interval along the
imaginary axis, and the coefficients B, are chosen to increase the stability
interval along the negative real axis.

The coefficients of a five-stage scheme 33 which has been found to be
particularly effective are tabulated below.

011='%- fr=1

6¥2=§ B2 =0

a3 =§ ,33 = 0.56 (9)
g =3 ﬂ4=0

ag=1 p5=044

3.8 ACCELERATION OF STEADY FLOW CALCULATIONS

Radical improvements in the rate of convergence to a steady-state solution can
be realized by the multigrid time-stepping technique. The concept of acceler-
ation by the introduction of multiple grids was first proposed by Fedorenko 34,
There is by now a fairly well-developed theory of multigrid methods for elliptic
equations based on treating the updating scheme as a smoothing operator on
each grid3%:38. This theory does not hold for hyperbolic systems. Nevertheless,
it seems that it ought to be possible to accelerate the evolution of a hyperbolic
system to a steady state by using large time steps on coarse grids so that dis-
turbances can be more rapidly expelled through the outer boundary. Various
multigrid time-stepping schemes designed to take advantage of this effect have
been proposed 37:38:39:40,41,42,43,44,45
In our work we implement a multigrid scheme, originally developed by
Jameson 38, which uses a sequence of coarser meshes generated by eliminating
alternate points in each coordinate direction. In order to give a precise de-
scription of the multigrid scheme, subscripts may be used to indicate the grid
level. Several transfer operations need to be defined. First the solution vector
on grid k must be initialized as
(0

wy, ) = Tk k—1Wk—1,
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where wg_; is the current value on grid k—1, and T} 1 is a transfer operator.
Next it is necessary to transfer a residual forcing function such that the solution
on grid k is driven by the residuals calculated on grid ¥ — 1. This can be
accomplished by setting

P = Qk,k_1Rk_1 (wk-—l) — Ry [wg))] ,

where Q. k-1 is another transfer operator. Then Ry (wp) is replaced by Ry (ws)+
P, in the time- stepping scheme. Thus, the multistage scheme is reformulated
as

wg) = w,(co) — a1 Aty [R;co) + Pk]

wfcq"'l) = w;co) - aq+1Atk [R;cq) + Pk] .
The result 'wfcm) then provides the initial data for grid £ + 1. Finally, the
accumulated correction on grid k has to be transferred back to grid k — 1
with the aid of an interpolation operator Iy_; . With properly optimized
coefficients, multistage time-stepping schemes can be very efficient drivers of
the multigrid process. A W-cycle of the type illustrated in Figure 1 proves to
be a particularly effective strategy for managing the work split between the
meshes. In a three-dimensional case the number of cells is reduced by a factor
of eight on each coarser grid. On examination of the figure, it can therefore be
seen that the work measured in units corresponding to a step on the fine grid
is of the order of
1+2/8+4/64+...<4/3,

and consequently the very large effective time step of the complete cycle costs
only slightly more than a single time step in the fine grid.

3.4 A MULTIGRID IMPLICIT SCHEME FOR UNSTEADY FLOW

Time dependent calculations are needed for a number of important applica-

tions, such as flutter analysis or the simulation of the flow past a helicopter

rotor, in which the stability limit of an explicit scheme forces the use of much

smaller time steps than would be needed for an accurate simulation. In this

situation a multigrid explicit scheme can be used in an inner iteration to drive

the solution of a fully implicit time discretization 1. '
Suppose that (8) is approximated as

" Daw™! + R(w™) = 0.
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1a: 3 Levels.

4 Level Cycle 4 Level Cycle

1c: 5 Levels.
Figure 1: Multigrid W-cycle for managing the grid calculation. FE, evaluate the change in

the flow for one step; T, transfer the data without updating the solution.

Here D, is a k** order accurate backward difference operator of the form

11
= — ~(A™)?
Dt Atzq( ) b
g=1
where
A~ w™l = @t -y,

Applied to the linear differential equation

the schemes with k = 1,2 are stable for all @At in the left half plane (A-
stable). Dahlquist has shown that A-stable linear multi-step schemes are at
best second order accurate®®. Gear however, has shown that the schemes with
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k < 6 are stiffly stable*”, and one of the higher order schemes may offer a better
compromise between accuracy and stability, depending on the application.

Equation (8) is now treated as a modified steady state problem to be solved
by a multigrid scheme using variable local time steps in a fictitious time #*.
For example, in the case k = 2 one solves

Oow «
at* - R (’U)),
where
") = 5 2 n_ 1 au
R(w)—2Atw+R(w)+Atw YA

and the last two terms are treated as fixed source terms. The first term shifts
the Fourier symbol of the equivalent model problem to the left in the complex
plane. While this promotes stability, it may also require a limit to be imposed
on the magnitude of the local time step At* relative to that of the implicit
time step At. This limitation may be relieved by a point-implicit modification
of the multi-stage scheme *8. In the case of problems with moving boundaries
the equations must be modified to allow for movement and deformation of the
mesh.

3.5 DYNAMIC REMESHING AND MESH MOVEMENT

In an Eulerian reference frame both the aerodynamic shape design problem
and the unsteady aeroelastic problem require a method by which the compu-
tational meshes may be efficiently and robustly regenerated. Either problem
may demand many hundreds of independent meshes on which the solution is
to be calculated.

Traditional structured mesh generation approaches, such as those that
solve elliptic or hyperbolic sets of partial differential equations, would be im-
practical in this setting. These iterative approaches are computationally ex-
pensive, and their repeated use for dynamic remeshing would be prohibitively
expensive. A second problem presented by the requirement of treating complex
geometries is that truly automated methods of generating arbitrary multi-block
meshes do not presently exist. In this paper we pursue the commonly used
alternative of analytic mesh perturbations. In this approach, a high quality
surface and volume mesh is first generated about the initial geometry by any
available procedure prior to the start of the time dependent analysis or the
optimal design. This initial mesh becomes the basis for all subsequent meshes
which are developed by analytic perturbations. In the case where only one
surface, such as the wing, is perturbed during the computation, the method
reduces to a very simple algebraic mesh perturbation algorithm. New meshes
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are created by moving all the mesh points on an index line projecting from
the surface by an amount which is attenuated as the arc length from the sur-
face increases. If the outer boundary of the grid domain is held constant, the
modification to the grid has the form

z;_zew — x;gld + Sold (w;Liew _ mgfd) , (10)
where x; represents the volume grid points, ., represents the surface grid
points, and S represents the arc length along the radial mesh line measured
from the outer domain and normalized so that S = 1 at the inner surface and
0 at the far field.

In order to use analytic mesh perturbations for the treatment of the more
general problem where multiple faces of a given block may be simultaneously
deformed, equation (10) had to be modified in a way that resembles trans-
finite interpolation (TFI)4°. Unlike TFI, where there is no prior knowledge
of the interior mesh, the perturbation algorithm developed here makes use
of the relative interior point distributions in the initial mesh. In our general
implementation of the perturbation method, a three-stage procedure is used.
For each block in the multi-block mesh the first stage shifts the internal mesh
points to produce an interim block that is determined entirely by the new lo-
cations of the 8 corner points defining the block. The second stage corrects
the perturbations resulting from the first stage by determining the distance
that each of the 12 edges resulting from the first stage needs to be moved to
attain the desired edge locations. Finally, with both corner and edge point mo-
tion accounted for, the third stage corrects the internal points for the relative
motion of the six faces.

Since our current flow solver and design algorithm assume a point-to-point
match between blocks, each block may be independently perturbed by the
algorithm, provided that perturbed surfaces are treated continuously across
block boundaries. The entire method of creating a new mesh is given by the
following algorithm.

1. All faces that are directly affected by the moving surfaces (active faces)
are explicitly perturbed.

2. All edges that touch an active face, either in the same block or in an
adjacent block, are implicitly perturbed by (10).

3. All inactive faces that either include an implicitly perturbed edge or
abut to an active face are implicitly perturbed by a quasi-3D form of the
general algorithm.

12



4. The three-stage scheme outlined above is then used on each block that
has one or more explicitly or implicitly perturbed faces to determine the
adjusted interior points.

Note that much of the mesh, especially away from the surfaces, will not re-
quire mesh perturbations and thus may remain fixed throughout the entire
unsteady analysis or design process. Close to the surfaces, many blocks will
either contain an active face or touch a block which contains an active face,
either by an edge or by a corner. As the design variations affect the active
faces, the above scheme ensures that the entire mesh will remain attached
along block boundaries. Added complexity is needed to accomplish step (2)
since the connectivity of the various edges and corners must be specified some-
how. Currently, pointers to and from a set of master edges and master corners
are determined as a preprocessing step. During the calculation, the motion of
any edges and corners are transferred to these master edges and corners from
which all connected edges and corners can be updated.

4 DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-
TATION

The multi-block method is parallelized using a domain decomposition model,
a SPMD (Single Program Multiple Data) strategy, and the MPI (Message
Passing Interface) Library for message passing °C. The choice of MPI was
determined by the requirement that the resulting code be portable to different
parallel computing platforms as well as to homogeneous and heterogeneous
networks of workstations.

Communication between subdomains is performed through halo cells sur-
rounding each subdomain boundary. Since both the convective and the viscous
fluxes are calculated at the cell faces (boundaries of the control volumes), all
six neighboring cells are necessary, thus requiring the existence of a single level
halo for each processor in the parallel calculation. The calculation of the dis-
sipative fluxes requires values from the twelve neighboring cells (two adjacent
to each face). For each cell within a processor, Figure 2 shows which neighbor-
ing cells are required for the calculation of convective, viscous, and dissipative
fluxes. For each processor, some of these cells will lie directly next to an inter-
processor boundary, in which case the values of the flow variables residing in a
different processor will be necessary to calculate the convective and dissipative
fluxes. :

The actual communication routines used are all of the asynchronous (or
non-blocking) type. In the current implementation of the program, each pro-
cessor must send and receive messages to and from at most 6 neighboring

13



1st Level Halo 2nd Level Halo

Cavective Stencil Dissipative Staxil

Figure 2: Convective and Dissipative Discretization Stencils.

processors (left and right neighbors in each of the three coordinate directions).
The communication is scheduled such that at every instant in time, pairs of
processors are sending/receiving to/from one another in order to minimize
contention in the communication schedule.

The partitioning of the mesh is performed by allocating complete blocks to
each processor. The underlying assumption is the fact that there will always
be more blocks than processors available. This approach has the advantage
that the number of multigrid levels that can be used in the parallel imple-
mentation of the code is always the same as in the serial version. Moreover,
the number of processors in the calculation can now be any integer number,
since no restrictions are imposed by the partitioning in any of the coordinate
directions within each block.

The only drawback of this approach is the loss of the exact load balanc-
ing that can be achieved by partitioning single-block meshes along the three
coordinate directions. The various blocks in the calculation can have different
sizes, and consequently, it is very likely that each processor will be assigned a
different total number of cells in the calculation. This, in turn, will imply that
some of the processors will be waiting until the processor with the largest num-
ber of cells has completed its work and parallel performance will suffer. The
approach that we have followed to solve the load balancing problem is to assign
to each processor, in a pre-processing step, a certain number of blocks such
that the total number of cells is as close as possible to the exact share for per-
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[[ Processor Number | Percentage of Load ||

1 12.50000
12.50000
12.98701
12.01298
12.98701
12.01298
12.50000
12.50000

O 3| O] | | QO DO

Table 1: Calculated Load Distribution on an 8 Processor Calculation

fect load balancing. For example, one of the meshes for the wing/body/nacelle
configuration of a small business jet was made up of 72 structured blocks of
different sizes. When 8 processors are used, the load balance obtained can be
seen in Table 1 to be quite close to exact. One should note that load balancing
based on the total number of cells in each processor is only an approximation
to the optimal solution of the problem. Other variables such as the number of
blocks, the size of each block, and the size of the buffers to be communicated
play an important role in proper load balancing.

Parallel Efficiency

For problems with a low task granularity (ratio of the number of bytes received
by a processor to the number of floating point operations it performs), large
parallel efficiencies can be obtained. Unfortunately, convergence acceleration
techniques developed in the 1980s base their success on global communication
in the computational domain. Thus, current multigrid and implicit residual
smoothing techniques are bound to hinder paraliel performance for problems
with smaller mesh sizes. For larger meshes used in viscous turbulent flow
calculations on complete configurations, the granularity becomes low enough,
and the parallel performance is quite high.

Several techniques can be applied to reduce the communication cost of
the multigrid technique. Among these, one can consider completely eliminat-
ing communication at the coarser levels of the multigrid cycle (thus allowing
each processor to operate independently with the multigrid forcing terms at
interprocessor boundaries derived from the flow variables in the finest mesh).
Alternatively, one can also avoid sending messages at the end of every stage
in the Runge-Kutta time stepping. Past experience has shown 51 that these
savings in communication cost are usually offset by a degradation in the conver-
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gence rate of the overall algorithm. Therefore, in the present implementation it
was decided to allow message passing any time the flow variables were altered.

5 COMPUTATIONS OF STEADY AND TIME-DEPENDENT FLOWS

The flexibility and the efficiency of our multi-block solver is demonstrated by
the results included in this section. Both steady and unsteady flow problems
are presented.

5.1 STEADY EULER AND RANS ANALYSIS

In the first test case the steady inviscid solution capability is demonstrated on a
typical business jet configuration depicted in Figure 3. The same configuration
will serve as a test for a viscous analysis case and an inviscid design case. The
mesh for the inviscid analysis contains 240 blocks and 4.2 million cells including
halos. The geometry modeled consists of a wing-body-nacelle-pylon. The
empennage was left out to simplify the initial grid generation. The nacelles
are modeled as flow-through. The layout of the mesh topology is that of a
general C-O. The mesh fidelity is such that a quick switch to Navier-Stokes
calculations is possible by changing the spacing normal to the surface. The
wing sweep is 20 degrees. Thus, with the thick airfoil sections featured in
the design, it remains a challenge to contain wave drag at the moderate Mach
numbers of its design point (M = 0.75 - 0.82). Figure 3 shows the configuration
colored by calculated iso-Cp levels at M = 0.82 and a = 1.0 degrees. Although
they are not presented here, correlations of the wing pressure distributions have
been obtained with experimental data. The comparisons with tunnel data are
excellent except for a 5% difference in the location of the upper surface shock
due to the omission of viscous effects. Using four multigrid levels, the solution
presented in Figure 3 was obtained in 150 cycles and required 30 minutes of
wall clock time using 32 processors of an IBM SP2 machine. The convergence
criterion for this calculation was a reduction in the average residual of 5.2
orders.

The second example of inviscid analysis is carried out for a supersonic
transport configuration. This configuration will serve also as an inviscid de-
sign case. Here a possible supersonic transport configuration was sized to
accommodate 300 passengers with a gross take-off weight of 750,000 lbs. The
supersonic cruise point is M = 2.2 with a C, of 0.105. As can be seen in Figure
4, the planform has a break in the leading edge sweep. The inboard leading
edge sweep is 68.5 degrees while the outboard is 49.5 degrees. Since the Mach
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angle at M = 2.2 is 63 degrees it is clear that some leading edge bluntness may
be used inboard without a significant wave drag penalty. Airfoils with blunt
leading edges were selected that range from 4% thick at the root to 2.5% thick
at the leading edge break point. The symmetric initial airfoils were chosen
with the purpose of accommodating spars at roughly 10% and 80% chord over
the span up to the leading edge break. Outboard of the leading edge break
where the wing sweep is ahead of the Mach cone, a sharp leading edge was
used to avoid undue wave drag. The four-engine configuration features ax-
isymmetric nacelles tucked close to the wing lower surface. This layout favors
reduced wave drag by minimizing the exposed diverter area. However, it may
be problematic because of the channel flows occurring in the juncture region
of the diverter, wing, and nacelle at the wing trailing edge. The leading edge
heights of the diverters are determined by the local boundary layer displace-
ment thickness such that entrainment of boundary layer flow into the engines
is avoided. Since the distances from the wing leading edge to the diverter
leading edge are different for the two nacelles, this causes a corresponding di-
verter height difference. The computational mesh on which the analysis is run
has 180 blocks and 1.5 million mesh cells. Again the nacelles are modeled as
flow-through and a general C-O mesh topology is followed. Figure 4 shows the
configuration colored by calculated iso-Cp levels at M = 2.2 and Cf, = 0.105.
Using four multigrid levels the solution was obtained in 100 cycles and required
16 minutes of wall clock time with 16 processors of an IBM SP2 machine. The
convergence level obtained for this calculation was a reduction in the average
residual of 3.8 orders.

The third analysis example corresponds to a steady Navier-Stokes solution
for the transonic business jet configuration used in the first test case. This
time the complete configuration is modeled, including the wing, body, nacelle,
pylon, vertical tail, and horizontal tail. The mesh contains 240 blocks with
5.8 million cells including halos. It has the same general C-O topology with
flow-through nacelles. For this calculation only the wing is treated as a no-slip
boundary condition with the remaining solid surfaces modeled as inviscid type.
The wall normal spacing of the first cell was such that at the flight conditions
a yt = 1 would be attained at the half span trailing edge assuming a flat
plate turbulent boundary layer. At the flight conditions (M = 0.80 and an
altitude of 40,000 ft) the Reynolds number is 1.45 million/ft. A Baldwin-Lomax
turbulence model is used in the demonstration and should be adequate for this
attached flow condition. Figure 5 shows the iso-Cp solution at M = 0.82,
Re = 1.45 million/ft and Cr, = 0.36. As will be shown later in the design
studies, this condition is above the design point for the configuration both in
terms of Mach number and Cr. Figure 6 shows comparisons of the wing Cp
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distribution between this Navier-Stokes solution and those obtained by the
Euler calculation presented in the first test case at the same flight conditions
(M and «). Note that the shock position has moved forward for the Navier-
Stokes calculations; and though it is not presented here, this agrees well with
experimental data. These results were obtained in 300 four-level multigrid
cycles using 32 processors on an IBM SP2. The reduction in the average
residual was 4.3 orders and the elapsed wall time was 3.25 hours.

5.2 TIME-RESOLVED HELICOPTER ROTOR
Rigid Rotor—Navier-Stokes Hover

A Navier-Stokes calculation was performed on the Caradonna rotor 32 at a
collective pitch of 8 degrees and a tip Mach number of 0.877. Shock-free cases
including viscous effects produced results that were very similar to the inviscid
and experimental results and are not reproduced here. The grid used in this
case was an H-H grid with 256 x 64 x 64 cells, with 128 cells on the surface of
the airfoil in the chordwise direction and 48 cells in the spanwise direction. A
Baldwin-Lomax turbulence model was used for a tip chord Reynolds number
of 3,930,000. Approximately 24 cells lie in the boundary layer of the rotor.
This level of resolution has been shown to be satisfactory for these types of
calculations when using a CUSP scheme %3543, Figure 7 shows experimen-
tal and numerical pressure coefficient distributions at different outboard radial
locations of the blade. The most likely causes for this disagreement with exper-
imental measurements are the inadequacy of the Baldwin-Lomax turbulence
model for flow cases which include shock-boundary layer interaction such as
the present case, and the differences between transition locations in the-compu-
tation and experiment. Transition in this calculation was fixed at the leading
edge of the blade, which may not correspond to the experimental location of
transition (which was not specified in the experimental report). To reach an
adequate level of convergence (five orders of magnitude reduction in the RMS
residual of density), this calculation required 6.5 hours on 16 processors of an
IBM SP-2. The computation was perfectly load balanced with 64 blocks of
32 x 32 x 16 cells.

Rigid Rotor—Euler Forward Flight

A series of time dependent calculations for the Caradonna rotor were also
carried out to establish the feasibility of forward flight simulations. In this
case, the problem is no longer symmetric and the full two bladed rotor (24
blocks) must be simulated. The freestream conditions are set appropriately,
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while the rotor and attached grid are rotated at the correct angular velocity.
The collective pitch of the blade was set to 8 degrees. The tip Mach number
for this flight condition was 0.628 while the advance ratio was 0.30.

Three calculations using 36, 72 and 144 time steps per revolution (corre-
sponding to 10, 5 and 2.5 degrees per step) were carried out with a second
order accurate discretization for the time derivative, and a refinement study
was performed to verify the time accuracy. Between 20 and 25 multigrid cycles
were used at each time step in order to converge the pseudo-time iteration to
an acceptable level. The results are presented in Figure 8 which shows the
lift coefficient of the rotor as a function of the azimuthal angle. As would be
expected, the series of lift coefficient histories converges as the number of time
steps per revolution is increased. Approximately 4-6 revolutions were needed
to attain a periodic solution for the lift coefficient. For the 144 time step per
revolution case, approximately 4 hours on 12 processors of an IBM SP-2 were
used for each full revolution. Additional calculations not presented here indi-
cate that, at lower advance ratios, more revolutions of the blade are needed in
order to achieve a periodic solution. When the advance ratio is lowered, the
wake is not convected as far away from the blade and therefore has a larger
effect on the blade loading. :

Aeroelastic Rotor—Euler Forward Flight

A preliminary aeroelastic calculation was attempted using the five bladed rotor
at a tip Mach number of 0.628 and an advance ratio of 0.30. The same mesh
used in the hover cases was repeated at 72 degree intervals resulting in a total
mesh size of 5x 96 x 32 x 56 = 860, 160 cells with 5x 18 = 90 blocks. Aeroelastic
deflections were computed for all blades, but only modal deflections for one of
these blades are reported. A simple structural deflection model was coupled
to the flow equations to account for the aeroelastic properties of the blade.

A total number of 36 time steps per revolution was used allowing for the
motion of the blades at 10 degree intervals. Within each time step, 50 multi-
grid cycles were used to fully converge the coupled fluid/aeroelastic system.
Information between equation systems was exchanged after every 5 multigrid
cycles of the flow solver.

Figure 9 shows the time evolution of three of the bending modes during
the last computed rotor revolution. For the first mode of vibration, a neg-
ative modal coordinate represents an upward tip displacement. As one can
see, after 6 revolutions the modal coordinates have nearly reached a periodic

" state. In particular, it is interesting to note that the maximum modal deflec-
tions are achieved on the retreating side, which is not unreasonable given the
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assumptions made in the modeling of the structural properties of the blades.
The problem was solved using 30 processors of an IBM SP-2 system (6 pro-
cessors per blade), achieving almost perfect load balance (4% variation between
processors). Nine hours were required to compute a total of 6 revolutions.
Further verification using more realistic structural models and experimen-
tal data is needed. Nevertheless, it is important to point out that this calcula-
tion indicates that forward flight rotor calculations including aeroelastic effects
are indeed feasible on current high performance parallel computing platforms.

5.3 THE ADJOINT APPROACH TO OPTIMAL DESIGN
5.4 GENERAL FORMULATION

While a detailed derivation of the adjoint formulation for optimal design using
either the Euler or the Navier-Stokes equations goes well beyond the scope
of this paper, it is helpful to summarize the general description of the adjoint
approach which has been thoroughly documented in references ®1%:55,

The progress of the design procedure is measured in terms of a cost function
I which could be, for example, the drag coefficient or the lift to drag ratio. For
flow about an aircraft configuration, the aerodynamic properties which define
the cost function are functions of the flow-field variables (w) and the physical
location of the boundary F. Thus the cost function may be written as

I=I(w,¥),
while its first variation is given by

oIt oIt
oI = [-67] dw + [5?] OF. (11)
Using control theory, the governing equations of the flow-field are introduced
as a constraint in such a way that the final expression for the gradient does
not require multiple flow solutions. This corresponds to eliminating éw from
(11).
Suppose that the governing equation R which expresses the dependence of
w and F within the flow-field domain D is written as

R(w,F)=0. (12)
Then its corresponding first variation can also be written
OR OR
6R = [—a—{;] ow + [ﬁ] 6F =0, (13)
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since R = 0 must be satisfied at any point in the design space. Next, intro-
ducing a Lagrange multiplier 1, we have after combining (11) and (13),

aI” aIT

e
{%"’/’T[aw]}
jor

J57)

T
+ {a’ B (14)
Choosing 1 to satisfy the adjoint equation
8R1T oI
5] v=m, (15)
| the first term is eliminated, and we find that
oI = GoF, : (16)

where
T
G = 6] TIJT [BR}

The advantage is that (16) is independent of dw, with the result that the
gradient of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations. In the case
that (12) is a partial differential equation, the adjoint equation (15) is also
a partial differential equation and determination of the appropriate boundary
conditions requires careful mathematical treatment.

The computational cost of a single design cycle is roughly equivalent to the
cost of two flow solutions since the the adjoint problem has similar complexity
to that of the flow solution problem. When the number of design variables
becomes large, the computational efficiency of the control theory approach
over the traditional approach, which requires direct evaluation of the gradients
by individually varying each design variable and recomputing the flow-field,
becomes compelling.

Once equation (13) is established, an improvement can be made with a
shape change

0F = =AG
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where ) is positive, and small enough that the first variation is an accurate
estimate of 1. Then
8I=-XGTG <0

After making such a modification, the gradient can be recalculated and the pro-
cess repeated to follow a path of steepest descent until a minimum is reached.
In order to avoid violating constraints, such as a minimum acceptable wing
thickness, the gradient may be projected into an allowable subspace within
which the constraints are satisfied. In this way, procedures can be devised
which must necessarily converge at least to a local minimum.

The adjoint system is solved on the multi-block domain in a fashion iden-
tical to that used for the flow solution. Thus like the flow solver, the adjoint
solver uses an explicit multistage Runge-Kutta-like algorithm accelerated by
residual smoothing and multigrid. Inter-block communication is again han-
dled through a double halo which allows for the full transfer of information
across boundaries except for the stencil of support for the implicit residual
smoothing. In the test cases to be presented in the next section NPSOL ¢,
a Sequential Quadratic Programming (SQP) optimization algorithm was used
to drive the design process. References?:10:11,12:57,58,59,55 oive complete treat-
ments of the details of how the adjoint equations are derived specifically for
the Euler and Navier-Stokes equations as well as details regarding how the
final gradient terms are evaluated. The references are also useful for an un-
derstanding of the options that are available in linking an adjoint method to
various popular optimization algorithms. Finally, reference 8¢ shows some of
the possible discretization schemes that can be used for the adjoint equations.

5.5 EXAMPLES OF DESIGN OPTIMIZATION

Numerical results will be presented for two classes of problems to demonstrate
the versatility of our method. Reference5® gives a treatment of the reliability of
the flow solver as well as the ability of the adjoint method to provide accurate
gradients very efficiently. The parallel speed-ups attained by the method have
been demonstrated in reference!3, and are generally better than 90%.

‘Transonic Constrained Aircraft Design

As a first demonstration of the multi-block solver in the design mode, the
transonic business jet configuration analyzed earlier is considered. In this
Euler-based design case the initial multi-block mesh about the business jet
wing, body, and nacelle has 72 blocks and 750,000 cells. Underlying geometry
entities that are used to drive design changes include the wing with six defining
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stations and the fuselage. The initial configuration was designed for M = 0.8
and Cr = 0.3.

In the first design case (Test Case 1), a single-point constrained design is
attempted in which the design Mach number is pushed from 0.80 to 0.82. The
objective is to minimize configuration pressure drag at a fixed lift coeflicient of
0.3 by modifying the wing shape. Eighteen Hicks-Henne design variables are
chosen for five of the six defining sections for a total of 90 design variables.
(The section at the symmetry plane is not being modified.) Spar thickness con-
straints are also enforced at each defining station at z/c = 0.2 and z/c = 0.8.
Maximum thickness is forced to be preserved at z/c = 0.4 for all six defining
sections. Each section is also constrained to have the thickness preserved at
z/c = 0.95 to ensure an adequate included angle at the trailing edge. A total
of 30 linear geometric constraints are imposed on the configuration. Figure
10 shows overlays of the C, distributions at four stations along the wing for
the initial configuration and final design after 5 NPSOL iterations. It is seen
that the final result has reached a near-shock-free condition over much of the
outboard wing panel. The drop in configuration pressure drag for this case
was 22.5%. Noting that most of this drag reduction came from a decrease in
wing wave drag implies that further improvements may be possible through
the reshaping of other components.

Before proceeding to the next test case, it should be noted that this busi-
ness jet design example is only representative of the potential for automated
design, and is not intended to provide a design for actual construction. In fact,
only 5 NPSOL steps were taken when considerably more steps could have im-
proved the design further. More importantly, for the case of transonic design,
the inclusion of viscous effects may prove to have an important impact on the
optimized shape. In our future transonic studies, the viscous flow solver will
be used.

Supersonic Constrained Aircraft Design

In the case of supersonic design, it is conjectured that as long as turbulent flow
is assumed over the entire configuration, the inviscid Euler equations suffice for
aerodynamic design. The pressure drag does not seem to be greatly affected
by the inclusion of viscous effects, and a flat plate skin friction estimate of
viscous drag is often a good approximation.

Here the configuration which was considered for the Euler analysis case
presented in section 5.1 will be revisited. The mesh contains 180 blocks and
1.5 million mesh points, while the underlying geometry entities used to drive
the design changes define the wing with 16 sectional cuts and the body with
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200 sectional cuts. In this case, since we hope to optimize the shape of the
wing, care must be taken to ensure that the nacelles remain properly attached
with the diverter heights maintained. To accomplish this without introducing
additional geometric complexity, the portions of the nacelles and diverters
that are actually below the wing planform outline take their associated surface
mesh point motion from their projected locations on the lower parametric wing
surfaces.

The objective of the design is to reduce the drag at a single design point
(M = 2.2, C, = 0.105) by modifying the wing shape. Just as in the transonic
cases, 18 design variables of the Hicks-Henne type are chosen for a given wing
defining section. However, instead of applying them to all 16 sections, they are
applied to 8 of the sections and then lofted linearly to the neighboring sections.
Spar constraints are imposed for all wing defining sections at z/c = 0.05 and
z/c = 0.8. An additional minimum thickness constraint is specified along the
span at z/c = 0.5. A final thickness constraint is enforced at z/c = 0.95 to
ensure a reasonable trailing edge included angle. An iso-C), representation of
the initial and final designs is depicted in Figure 11 for both the upper and
lower surfaces.

It should be noted that the strong oblique shock evident near the leading
edge of the upper surface on the initial configuration has been largely elimi-
nated after 5 NPSOL design iterations. It is also seen that the upper surface
pressure distribution in the vicinity of the nacelles has formed an unexpected
pattern. These upper surface pressure patterns are conjectured to be the re-
sult of sculpting of the lower surface near the nacelles, which affects the upper
surface shape through the thickness constraints. For the lower surface, the
leading edge has developed a suction region while the shocks and expansions
around the nacelles have been somewhat reduced. Figure 12 shows the pres-
sure coefficients and (scaled) airfoil sections for four sectional cuts along the
wing. These plots further demonstrate the removal of the oblique shock on the
upper surface, and the addition of a suction region on the leading edge of the
lower surface. The airfoil sections have been scaled by a factor of 2 so that
shape changes may be seen more easily. Most notably, the section at 38.7%
span has had the lower surface drastically modified such that a large region of
the aft airfoil has a forward-facing portion near where the pressure spike from
the nacelle shock impinges on the surface. The final overall pressure drag was
reduced by 8%, from Cp = 0.0088 to Cp = 0.0081.
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6 CONCLUSIONS AND FUTURE DEVELOPMENTS

The development of a rapidly convergent multi-block flow solver, and its ef-
ficient implementation on parallel computers, makes the routine steady-state
analysis of complete aircraft entirely feasible. It also enables automatic aero-
dynamic design optimization, and time-resolved calculations on complex con-
figurations. The multi-block approach described in this paper has already been
extended to compute steady and time-dependent incompressible flow. Future
developments will focus on the implementation of advanced turbulence models,
as well as the implementation of design optimization techniques based on the
Reynolds Averaged Navier Stokes equations.
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Figure 3: Business Jet Configuration. Iso-Cp uler solution with 240 blocks and 1.2 million
mesh points. Al - 0.82, a - 1.0°.
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Iigure 1: Supersonic ‘lransport Conliguration. Iso-C'p Luler solution with 180 blocks and
1.5 million mesh points. A - 2.20, ¢/}, - 0.105.
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Figure 5: Business Jet Conliguration. 1so-C'p Navier-Stokes solution with 240 blocks and 5.8
million mesh points. Al - 0.82, « - 1.0°
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— - Euler Calculation

6a: span station z = 0.190 6b: span station z = 0.475

— - Euler Calculation

6¢c: span station z = 0.665 6d: span station z = 0.856

Figure 6: Business Jet Configuration. Comparison between Euler and Navier-Stokes solu-
tions M = 0.82, Cp = 0.36 - - -, Euler Cp; —, Navier-Stokes Cp.
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Figure 8: Two bladed rotor lift coefficient

versus azimuth for advance ratio of 0.30 ,
o = 36 steps per revolution, - - = 72 steps per
revolution, — = 144 steps per revolution.
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Figure 9: Time history of three bending

Figure 7: Pressure distribution on a rotor in ~ modes in forward flight for a five bladed ro-
hover, 6. = 8°, M; = 0.877. tor.
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. Original Configuration
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10a: span station z = 0.190

_ Original Configuration
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xc

10c: span station z = 0.665

S
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000 0100 02 03 04 05 060 O0X 08 00 10
xc

10b: span station z = 0.475

_ Original Configuration

T T T T T T T T T J
000 010 02 03 04 05 06 0N 0% 0% 10
xic

10d: span station z = 0.856

Figure 10: Business Jet Configuration. Drag Minimization at Fixed Lift. M = 0.82, C =
0.3 90 Hicks-Henne variables. Spar Constraints Active. - - -, Initial Pressures; —, Pressures

After 5 Design Cycles.



Figure 11: Supersonic Transport Configuration. Drag Minimization al Pixed Lift. Baseline
solutions on the left half, optimized solutions on the right half. Af - 2.20, ¢, — 0.105
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